Characterization of the SUMO-Binding Activity of the Myeloproliferative and Mental Retardation (MYM)-Type Zinc Fingers in ZNF261 and ZNF198
نویسندگان
چکیده
SUMO-binding proteins interact with SUMO modified proteins to mediate a wide range of functional consequences. Here, we report the identification of a new SUMO-binding protein, ZNF261. Four human proteins including ZNF261, ZNF198, ZNF262, and ZNF258 contain a stretch of tandem zinc fingers called myeloproliferative and mental retardation (MYM)-type zinc fingers. We demonstrated that MYM-type zinc fingers from ZNF261 and ZNF198 are necessary and sufficient for SUMO-binding and that individual MYM-type zinc fingers function as SUMO-interacting motifs (SIMs). Our binding studies revealed that the MYM-type zinc fingers from ZNF261 and ZNF198 interact with the same surface on SUMO-2 recognized by the archetypal consensus SIM. We also present evidence that MYM-type zinc fingers in ZNF261 contain zinc, but that zinc is not required for SUMO-binding. Immunofluorescence microscopy studies using truncated fragments of ZNF198 revealed that MYM-type zinc fingers of ZNF198 are necessary for localization to PML-nuclear bodies (PML-NBs). In summary, our studies have identified and characterized the SUMO-binding activity of the MYM-type zinc fingers in ZNF261 and ZNF198.
منابع مشابه
ZNF198 Stabilizes the LSD1–CoREST–HDAC1 Complex on Chromatin through Its MYM-Type Zinc Fingers
Histone modifications in chromatin regulate gene expression. A transcriptional co-repressor complex containing LSD1-CoREST-HDAC1 (termed LCH hereafter for simplicity) represses transcription by coordinately removing histone modifications associated with transcriptional activation. RE1-silencing transcription factor (REST) recruits LCH to the promoters of neuron-specific genes, thereby silencing...
متن کاملCloning and mapping of members of the MYM family.
Tandem repeats of a novel, putative, zinc-binding motif (MYM) have been described within the products of two, highly homologous genes: ZNF198/RAMP/FIM and ZNF261/DXS6673E. ZNF198, mapping to 13q11-q12, was recently shown to fuse to the fibroblast growth factor receptor 1 gene in the t(8;13)(p11;q11-q12) rearrangement associated with a stem cell leukemia/lymphoma syndrome. ZNF261 at Xq13.1 is di...
متن کاملPKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder.
Human stem cell leukemia-lymphoma syndrome usually presents itself as a myeloproliferative disorder (MPD) that evolves to acute myeloid leukemia and/or lymphoma. The syndrome associated with t(8;13)(p11;q12) results in expression of the ZNF198-fibroblast growth factor receptor (FGFR) 1 fusion tyrosine kinase. Current empirically derived cytotoxic chemotherapy is inadequate for treatment of this...
متن کاملZNF198-FGFR1 transforming activity depends on a novel proline-rich ZNF198 oligomerization domain.
An acquired chromosomal translocation, t(8;13)(p11;q11-12), observed in a distinctive type of stem cell leukemia/lymphoma syndrome, leads to the fusion of the 5' portion of ZNF198 and the 3' portion of FGFR1. ZNF198-FGFR1 fusion transcripts encode 4 to 10 zinc fingers, a proline-rich region, and the intracellular portion of the FGFR1 (fibroblast growth factor receptor 1) receptor tyrosine kinas...
متن کاملConsistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the t(8;13)(p11;q12) myeloproliferative syndrome.
The 8p11 myeloproliferative syndrome is a rare, aggressive condition associated with reciprocal translocations of chromosome band 8p11, most commonly the t(8;13)(p11;q12). To identify the genes involved in this translocation, we used fluorescence in situ hybridization (FISH) analysis to show that the chromosome 8 breakpoints fell within YAC 899e2 and that the chromosome 13 breakpoints are clust...
متن کامل